Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Oncogene ; 43(14): 1063-1074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374406

ABSTRACT

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.


Subject(s)
Lung Neoplasms , Membrane Proteins , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Lipoylation , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Peptides , Triple Negative Breast Neoplasms/genetics
2.
Breast Cancer Res ; 25(1): 131, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904250

ABSTRACT

BACKGROUND: Mammary physiology is distinguished in containing adult stem/progenitor cells that are actively amending the breast tissue throughout the reproductive lifespan of women. Despite their importance in both mammary gland development, physiological maintenance, and reproduction, the exact role of mammary stem/progenitor cells in mammary tumorigenesis has not been fully elucidated in humans or animal models. The implications of modulating adult stem/progenitor cells in women could lead to a better understanding of not only their function, but also toward possible breast cancer prevention led us to evaluate the efficacy of rapamycin in reducing mammary stem/progenitor cell activity and malignant progression markers. METHODS: We analyzed a large number of human breast tissues for their basal and luminal cell composition with flow cytometry and their stem and progenitor cell function with sphere formation assay with respect to age and menopausal status in connection with a clinical study (NCT02642094) involving a low-dose (2 mg/day) and short-term (5-7 days) treatment of the mTOR inhibitor sirolimus. The expression of biomarkers in biopsies and surgical breast samples were measured with quantitative analysis of immunohistochemistry. RESULTS: Sirolimus treatment significantly abrogated mammary stem cell activity, particularly in postmenopausal patients. It did not affect the frequency of luminal progenitors but decreased their self-renewal capacity. While sirolimus had no effect on basal cell population, it decreased luminal cell population, particularly in postmenopausal patients. It also significantly diminished prognostic biomarkers associated with breast cancer progression from ductal carcinoma in situ to invasive breast cancer including p16INK4A, COX-2, and Ki67, as well as markers of the senescence-associated secretary phenotype, thereby possibly functioning in preventing early breast cancer progression. CONCLUSION: Overall, these findings indicate a link from mTOR signaling to mammary stem and progenitor cell activity and cancer progression. Trial registration This study involves a clinical trial registered under the ClinicalTrials.gov identifier NCT02642094 registered December 30, 2015.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Breast Neoplasms/genetics , Mammary Glands, Animal/metabolism , Stem Cells/metabolism , Biomarkers/metabolism , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Sirolimus/metabolism , Epithelial Cells/metabolism
3.
Cell Rep ; 42(9): 113067, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37659081

ABSTRACT

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Subject(s)
Lung Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Endothelial Cells , Signal Transduction , Cell Differentiation , Tumor Microenvironment , Cell Line, Tumor
4.
Mol Cancer Ther ; 22(11): 1248-1260, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37493258

ABSTRACT

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERß) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERß agonist to promote its antitumor action is limiting the therapeutic promise of ERß. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERß agonists. Because of its high activity in ERß reporter assays, specific binding to ERß in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERß than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 µmol/L, while having little to no effect on ERß-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERß target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERß agonist, offering patients with GBM a potential means of improving survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Mice , Animals , Glioblastoma/pathology , Estrogen Receptor beta/genetics , Cell Line, Tumor , Brain/metabolism , Estrogens , Brain Neoplasms/pathology
5.
Clin Cancer Res ; 29(24): 5021-5030, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37363965

ABSTRACT

PURPOSE: To overcome resistance to antihormonal and HER2-targeted agents mediated by cyclin D1-CDK4/6 complex, we proposed an oral combination of the HER2 inhibitor tucatinib, aromatase inhibitor letrozole, and CDK4/6 inhibitor palbociclib (TLP combination) for treatment of HR+/HER2+ metastatic breast cancer (MBC). PATIENTS AND METHODS: Phase Ib/II TLP trial (NCT03054363) enrolled patients with HR+/HER2+ MBC treated with ≥2 HER2-targeted agents. The phase Ib primary endpoint was safety of the regimen evaluated by NCI CTCAE version 4.3. The phase II primary endpoint was efficacy by median progression-free survival (mPFS). RESULTS: Forty-two women ages 22 to 81 years were enrolled. Patients received a median of two lines of therapy in the metastatic setting, 71.4% had visceral disease, 35.7% had CNS disease. The most common treatment-emergent adverse events (AE) of grade ≥3 were neutropenia (64.3%), leukopenia (23.8%), diarrhea (19.0%), and fatigue (14.3%). Tucatinib increased AUC10-19 hours of palbociclib 1.7-fold, requiring palbociclib dose reduction from 125 to 75 mg daily. In 40 response-evaluable patients, mPFS was 8.4 months, with similar mPFS in non-CNS and CNS cohorts (10.0 months vs. 8.2 months; P = 0.9). Overall response rate was 44.5%, median duration of response was 13.9 months, and clinical benefit rate was 70.4%; 60% of patients were on treatment for ≥6 months, 25% for ≥1 year, and 10% for ≥2 years. In the CNS cohort, 26.6% of patients remained on study for ≥1 year. CONCLUSIONS: TLP combination was safe and tolerable. AEs were expected and manageable with supportive therapy and dose reductions. TLP showed excellent efficacy for an all-oral chemotherapy-free regimen warranting further testing. See related commentary by Huppert and Rugo, p. 4993.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Letrozole , Breast Neoplasms/pathology , Receptor, ErbB-2/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Agents/therapeutic use
6.
Clin Cancer Res ; 29(13): 2419-2425, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37093199

ABSTRACT

PURPOSE: Glioblastoma represents the most common primary brain tumor. Although antiangiogenics are used in the recurrent setting, they do not prolong survival. Glioblastoma is known to upregulate fatty acid synthase (FASN) to facilitate lipid biosynthesis. TVB-2640, a FASN inhibitor, impairs this activity. PATIENTS AND METHODS: We conducted a prospective, single-center, open-label, unblinded, phase II study of TVB-2640 plus bevacizumab in patients with recurrent high-grade astrocytoma. Patients were randomly assigned to TVB-2640 (100 mg/m2 oral daily) plus bevacizumab (10 mg/kg i.v., D1 and D15) or bevacizumab monotherapy for cycle 1 only (28 days) for biomarker analysis. Thereafter, all patients received TVB-2640 plus bevacizumab until treatment-related toxicity or progressive disease (PD). The primary endpoint was progression-free survival (PFS). RESULTS: A total of 25 patients were enrolled. The most frequently reported adverse events (AE) were palmar-plantar erythrodysesthesia, hypertension, mucositis, dry eye, fatigue, and skin infection. Most were grade 1 or 2 in intensity. The overall response rate (ORR) for TVB-2640 plus bevacizumab was 56% (complete response, 17%; partial response, 39%). PFS6 for TVB-2640 plus bevacizumab was 31.4%. This represented a statistically significant improvement in PFS6 over historical bevacizumab monotherapy (BELOB 16%; P = 0.008) and met the primary study endpoint. The observed OS6 was 68%, with survival not reaching significance by log-rank test (P = 0.56). CONCLUSIONS: In this phase II study of relapsed high-grade astrocytoma, TVB-2640 was found to be a well-tolerated oral drug that could be safely combined with bevacizumab. The favorable safety profile and response signals support the initiation of a larger multicenter trial of TVB-2640 plus bevacizumab in astrocytoma.


Subject(s)
Glioblastoma , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Chronic Disease , Disease-Free Survival , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/pathology , Prospective Studies , Recurrence
7.
Neuro Oncol ; 25(7): 1249-1261, 2023 07 06.
Article in English | MEDLINE | ID: mdl-36652263

ABSTRACT

BACKGROUND: Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS: Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS: TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS: Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Mice , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Lysine/genetics , Lysine/pharmacology , Lysine/therapeutic use , DNA Breaks, Double-Stranded , Tandem Mass Spectrometry , Cell Line, Tumor , Glioma/drug therapy , DNA Repair , DNA/pharmacology , DNA/therapeutic use , Histone Demethylases/genetics , Histone Demethylases/pharmacology , Histone Demethylases/therapeutic use , Drug Resistance, Neoplasm , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Xenograft Model Antitumor Assays
8.
Neuro Oncol ; 25(6): 1085-1097, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36640127

ABSTRACT

BACKGROUND: MDNA55 is an interleukin 4 receptor (IL4R)-targeting toxin in development for recurrent GBM, a universally fatal disease. IL4R is overexpressed in GBM as well as cells of the tumor microenvironment. High expression of IL4R is associated with poor clinical outcomes. METHODS: MDNA55-05 is an open-label, single-arm phase IIb study of MDNA55 in recurrent GBM (rGBM) patients with an aggressive form of GBM (de novo GBM, IDH wild-type, and nonresectable at recurrence) on their 1st or 2nd recurrence. MDNA55 was administered intratumorally as a single dose treatment (dose range of 18 to 240 ug) using convection-enhanced delivery (CED) with up to 4 stereo-tactically placed catheters. It was co-infused with a contrast agent (Gd-DTPA, Magnevist®) to assess distribution in and around the tumor margins. The flow rate of each catheter did not exceed 10µL/min to ensure that the infusion duration did not exceed 48 h. The primary endpoint was mOS, with secondary endpoints determining the effects of IL4R status on mOS and PFS. RESULTS: MDNA55 showed an acceptable safety profile at doses up to 240 µg. In all evaluable patients (n = 44) mOS was 11.64 months (80% one-sided CI 8.62, 15.02) and OS-12 was 46%. A subgroup (n = 32) consisting of IL4R High and IL4R Low patients treated with high-dose MDNA55 (>180 ug) showed the best benefit with mOS of 15 months, OS-12 of 55%. Based on mRANO criteria, tumor control was observed in 81% (26/32), including those patients who exhibited pseudo-progression (15/26). CONCLUSIONS: MDNA55 demonstrated tumor control and promising survival and may benefit rGBM patients when treated at high-dose irrespective of IL4R expression level.Trial Registration: Clinicaltrials.gov NCT02858895.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Receptors, Interleukin-4/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Tumor Microenvironment
10.
Neuro Oncol ; 25(3): 459-470, 2023 03 14.
Article in English | MEDLINE | ID: mdl-35862252

ABSTRACT

BACKGROUND: The loss of neurogenic tumor suppressor microRNAs miR-124, miR-128, and miR-137 is associated with glioblastoma's undifferentiated state. Most of their impact comes via the repression of a network of oncogenic transcription factors. We conducted a high-throughput functional siRNA screen in glioblastoma cells and identify E74 like ETS transcription factor 4 (ELF4) as the leading contributor to oncogenic phenotypes. METHODS: In vitro and in vivo assays were used to assess ELF4 impact on cancer phenotypes. We characterized ELF4's mechanism of action via genomic and lipidomic analyses. A MAPK reporter assay verified ELF4's impact on MAPK signaling, and qRT-PCR and western blotting were used to corroborate ELF4 regulatory role on most relevant target genes. RESULTS: ELF4 knockdown resulted in significant proliferation delay and apoptosis in GBM cells and long-term growth delay and morphological changes in glioma stem cells (GSCs). Transcriptomic analyses revealed that ELF4 controls two interlinked pathways: 1) Receptor tyrosine kinase signaling and 2) Lipid dynamics. ELF4 modulation directly affected receptor tyrosine kinase (RTK) signaling, as mitogen-activated protein kinase (MAPK) activity was dependent upon ELF4 levels. Furthermore, shotgun lipidomics revealed that ELF4 depletion disrupted several phospholipid classes, highlighting ELF4's importance in lipid homeostasis. CONCLUSIONS: We found that ELF4 is critical for the GBM cell identity by controlling genes of two dependent pathways: RTK signaling (SRC, PTK2B, and TNK2) and lipid dynamics (LRP1, APOE, ABCA7, PLA2G6, and PITPNM2). Our data suggest that targeting these two pathways simultaneously may be therapeutically beneficial to GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Transcription Factors/genetics , Glioblastoma/pathology , MicroRNAs/genetics , Receptor Protein-Tyrosine Kinases/genetics , Gene Expression Regulation, Neoplastic , Lipids , Cell Proliferation , Cell Line, Tumor , Brain Neoplasms/pathology , DNA-Binding Proteins/genetics , Protein-Tyrosine Kinases/metabolism
11.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36394838

ABSTRACT

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/therapeutic use , Prospective Studies , Brain Neoplasms/pathology , Recurrence , Dendritic Cells/pathology , Vaccination
12.
Brain Multiphys ; 52023 Dec.
Article in English | MEDLINE | ID: mdl-38187909

ABSTRACT

Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models. Methods: We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters. Results: Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively. Conclusion: We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment. Statement of Significance: This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.

13.
Front Oncol ; 12: 900082, 2022.
Article in English | MEDLINE | ID: mdl-36226069

ABSTRACT

Glioblastomas (GBM) are the most common and aggressive form of primary malignant brain tumor in the adult population, and, despite modern therapies, patients often develop recurrent disease, and the disease remains incurable with median survival below 2 years. Resistance to bevacizumab is driven by hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which we tested in a phase 2, dual center (University of Texas Health Science Center in San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To identify circulating metabolic biomarkers of tumor hypoxia in patients, we used a high-resolution liquid chromatography-mass spectrometry-based approach to profile blood metabolites and their specific enantiomeric forms using untargeted approaches. Moreover, to evaluate early response to treatment, we characterized changes in circulating metabolite levels during treatment with combined bevacizumab and evofosfamide in recurrent GBM after bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as its enantiomeric form D-glutamic acid all inversely correlated with tumor hypoxia. Intermediates of the serine synthesis pathway, which is known to be modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and serine). Moreover, following treatment, lactic acid was modulated by treatment, likely in response to a hypoxia mediated modulation of oxidative vs glycolytic metabolism. In summary, although our results require further validation in larger patients' cohorts, we have identified candidate metabolic biomarkers that could evaluate the extent of tumor hypoxia and predict the benefit of combined bevacizumab and evofosfamide treatment in GBM following bevacizumab failure.

14.
Breast Cancer (Auckl) ; 16: 11782234221111374, 2022.
Article in English | MEDLINE | ID: mdl-36035625

ABSTRACT

Purpose: The objective of this study is to determine the impact of exposure to obesity-related systemic factors on fatty acid synthase enzyme (FASN) expression in breast cancer cells. Methods: MCF-7 breast cancer cells were exposed to sera from patients having obesity or not having obesity and subjected to quantitative reverse transcription polymerase chain reaction (RT-qPCR). Subsequent MTT and colony-forming assays using both MCF-7 and T-47D cells exposed to sera and treated with or without FASN inhibitor, TVB-3166, were used. MCF-7 cells were then treated with insulin and the sterol regulatory element-binding protein (SREBP) processing inhibitor, betulin, prior to analysis of FASN expression by quantitative RT-qPCR and western blot. Insulin-induced SREBP-FASN promoter binding was analyzed by chromatin immunoprecipitation with an anti-SREBP antibody. Results: In response to sera exposure (body mass index [BMI] >30) there was an increase in FASN expression in breast cancer cells. Furthermore, treatment with the FASN inhibitor, TVB-3166, resulted in a decreased breast cancer cell survival and proliferation while increasing apoptosis upon sera exposure (BMI >30). Insulin-exposed MCF-7 cells exhibited an increased FASN messenger RNA and protein expression, which is abrogated upon SREBP inhibition. In addition, insulin exposure induced enhanced SREBP binding to the FASN promoter. Conclusions: Our results implicate FASN as a potential mediator of obesity-induced breast cancer aggression and a therapeutic target of patients with obesity-induced breast cancer.

15.
Surg Neurol Int ; 13: 168, 2022.
Article in English | MEDLINE | ID: mdl-35509570

ABSTRACT

Background: We describe a case of a supratentorial ependymoma, zinc finger translocation-associated (ZFTA) fusion positive with extensive synaptophysin immunoreactivity arising from malignant transformation of an ependymoma with clear cell features in a patient with long-term follow-up. Case Description: A 55-year-old woman presented with seizures and ataxia 15 years after an initial resection of a clear cell ependymoma, Grade 2. Imaging demonstrated an enhancing right paracentral mass and the patient underwent biopsy and resection. Microscopic analysis showed regions of the tumor with morphological and immunohistochemical features typical of ependymoma, including perivascular pseudorosettes and focal dot- like epithelial membrane antigen positivity, as well as high-grade features. In addition, the neoplasm contained large nodular regions of clear cells exhibiting extensive synaptophysin immunoreactivity, suggestive of neural differentiation, and only focally positive immunoreactivity for glial markers. Electron microscopy showed poorly formed and ill-defined junctional complexes, but no cilia, microvilli, or dense granules were seen. Molecular profiling revealed the presence of a fusion between ZFTA (previously known as C11orf95) and RELA fusion. Conclusion: We report a case of extensive synaptophysin immunoreactivity in a ZFTA-RELA fusion-positive ependymoma that had undergone malignant transformation from a clear cell ependymoma and has long-term follow-up, contributing to the assessment of prognostic significance of synaptophysin immunoreactivity in supratentorial ependymoma, ZFTA fusion positive.

16.
Cancer Lett ; 540: 215717, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35568265

ABSTRACT

Aberrant activities of various cell cycle and DNA repair proteins promote cancer growth and progression and render them resistant to therapies. Here, we demonstrate that the anti-depressant imipramine blocks growth of triple-negative (TNBC) and estrogen receptor-positive (ER+) breast cancers by inducing cell cycle arrest and by blocking heightened homologous recombination (HR) and non-homologous end joining-mediated (NHEJ) DNA repair activities. Our results reveal that imipramine inhibits the expression of several cell cycle- and DNA repair-associated proteins including E2F1, CDK1, Cyclin D1, and RAD51. In addition, we show that imipramine inhibits the growth of ER + breast cancers by inhibiting the estrogen receptor- α (ER-α) signaling. Our studies in preclinical mouse models and ex vivo explants from breast cancer patients show that imipramine sensitizes TNBC to the PARP inhibitor olaparib and endocrine resistant ER + breast cancer to anti-estrogens. Our studies suggest that repurposing imipramine could enhance routine care for breast cancer patients. Based on these results, we designed an ongoing clinical trial, where we are testing the efficacy of imipramine for treating patients with triple-negative and estrogen receptor-positive breast cancer. Since aberrant DNA repair activity is used by many cancers to survive and become resistant to therapy, imipramine could be used alone and/or with currently used drugs for treating many aggressive cancers.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , DNA Repair , Female , Humans , Imipramine/pharmacology , Imipramine/therapeutic use , Mice , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/genetics
17.
Commun Biol ; 5(1): 493, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610507

ABSTRACT

The major limitations of DNA-targeting chemotherapy drugs include life-threatening toxicity, acquired resistance and occurrence of secondary cancers. Here, we report a small molecule, Carbazole Blue (CB), that binds to DNA and inhibits cancer growth and metastasis by targeting DNA-related processes that tumor cells use but not the normal cells. We show that CB inhibits the expression of pro-tumorigenic genes that promote unchecked replication and aberrant DNA repair that cancer cells get addicted to survive. In contrast to chemotherapy drugs, systemic delivery of CB suppressed breast cancer growth and metastasis with no toxicity in pre-clinical mouse models. Using PDX and ex vivo explants from estrogen receptor (ER) positive, ER mutant and TNBC patients, we further demonstrated that CB effectively blocks therapy-sensitive and therapy-resistant breast cancer growth without affecting normal breast tissue. Our data provide a strong rationale to develop CB as a viable therapeutic for treating breast cancers.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA , DNA Repair , Female , Humans , Mice , Receptors, Estrogen/metabolism
18.
Acta Neuropathol Commun ; 10(1): 32, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264242

ABSTRACT

Diffusely infiltrating gliomas are among the most common central nervous system tumors in adults. Over the past decade, the subcategorization of these tumors has changed to include both traditional histologic features and more recently identified molecular factors. However, one molecular feature that has yet to be integrated is the presence/absence of chromosomal instability (CIN). Herein, we use global methylation profiling to evaluate a reference cohort of IDH-mutant astrocytomas with and without prior evidence of CIN (n = 42), and apply the resulting methylation-based characteristics to a larger test cohort of publicly-available IDH-mutant astrocytomas (n = 245). We demonstrate that IDH-mutant astrocytomas with evidence of CIN cluster separately from their chromosomally-stable counterparts. CIN cases were associated with higher initial histologic grade, altered expression patterns of genes related to CIN in other cancers, elevated initial total copy number burden, and significantly worse progression-free and overall survival. In addition, in a grade-for-grade analysis, patients with CIN-positive WHO grade 2 and 3 tumors had significantly worse survival. These results suggest that global methylation profiling can be used to discriminate between chromosomally stable and unstable IDH-mutant astrocytomas, and may therefore provide a reliable and cost-effective method for identifying gliomas with chromosomal instability and resultant poor clinical outcome.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Adult , Astrocytoma/pathology , Brain Neoplasms/pathology , Chromosomal Instability/genetics , DNA Methylation , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation/genetics
19.
Commun Biol ; 4(1): 1235, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716410

ABSTRACT

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Leukemia Inhibitory Factor Receptor alpha Subunit/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Survival/drug effects , Female , Histone Deacetylase Inhibitors/administration & dosage , Mice , Mice, SCID
20.
Neurooncol Adv ; 3(1): vdab099, 2021.
Article in English | MEDLINE | ID: mdl-34485908

ABSTRACT

BACKGROUND: Glioblastomas (GBMs) are the most lethal primary brain tumors. Estrogen receptor ß (ESR2/ERß) function as a tumor suppressor in GBM, however, ERß expression is commonly suppressed during glioma progression. In this study, we examined whether drugs that reverse epigenetic modifications will enhance ERß expression and augment ERß agonist-mediated tumor suppression. METHODS: We tested the utility of epigenetic drugs which act as an inhibitor of histone deacetylases (HDACs), histone methylases, and BET enzymes. Mechanistic studies utilized RT-qPCR, chromatin immunoprecipitation (ChIP), and western blotting. Cell viability, apoptosis, colony formation, and invasion were measured using in vitro assays. An orthotopic GBM model was used to test the efficacy of in vivo. RESULTS: Of all inhibitors tested, HDACi (panobinostat and romidepsin) showed the potential to increase the expression of ERß in GBM cells. Treatment with HDACi uniquely upregulated ERß isoform 1 expression that functions as a tumor suppressor but not ERß isoform 5 that drives oncogenic functions. Further, combination therapy of HDACi with the ERß agonist, LY500307, potently reduced cell viability, invasion, colony formation, and enhanced apoptosis. Mechanistic studies showed that HDACi induced ERß is functional, as it enhanced ERß reporter activities and ERß target genes expression. ChIP analysis confirmed alterations in the histone acetylation at the ERß and its target gene promoters. In orthotopic GBM model, combination therapy of panobinostat and LY500307 enhanced survival of tumor-bearing mice. CONCLUSIONS: Our results suggest that the combination therapy of HDACi and LY500307 provides therapeutic utility in overcoming the suppression of ERß expression that commonly occurs in GBM progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...